منابع مشابه
Diagonal Matrix Reduction over Refinement Rings
Abstract: A ring R is called a refinement ring if the monoid of finitely generated projective R- modules is refinement. Let R be a commutative refinement ring and M, N, be two finitely generated projective R-nodules, then M~N if and only if Mm ~Nm for all maximal ideal m of R. A rectangular matrix A over R admits diagonal reduction if there exit invertible matrices p and Q such that PAQ is...
متن کاملStrongly Clean Matrix Rings over Commutative Rings
A ring R is called strongly clean if every element of R is the sum of a unit and an idempotent that commute. By SRC factorization, Borooah, Diesl, and Dorsey [3] completely determined when Mn(R) over a commutative local ring R is strongly clean. We generalize the notion of SRC factorization to commutative rings, prove that commutative n-SRC rings (n ≥ 2) are precisely the commutative local ring...
متن کاملA class of J-quasipolar rings
In this paper, we introduce a class of $J$-quasipolar rings. Let $R$ be a ring with identity. An element $a$ of a ring $R$ is called {it weakly $J$-quasipolar} if there exists $p^2 = pin comm^2(a)$ such that $a + p$ or $a-p$ are contained in $J(R)$ and the ring $R$ is called {it weakly $J$-quasipolar} if every element of $R$ is weakly $J$-quasipolar. We give many characterizations and investiga...
متن کاملOrthogonal Groups over Local Rings
In an earlier paper [S] we have determined the structure of the linear groups over a local ring. In this note we continue the study of the classical groups over a local ring with the investigation of the orthogonal groups. Our main result (cf. Theorem 6 below) is a complete description of the invariant subgroups of an orthogonal group of noncompact type (i.e., of index ^ 1) over a local ring L ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2014
ISSN: 1015-8634
DOI: 10.4134/bkms.2014.51.3.813